- дискриминанта
- (лат. discriminare) мат. израз под коренот во квадратна равенка од кој зависи дали корените на таа равенка ќе бидат реални или имагинарни.
Macedonian dictionary. 2013.
Macedonian dictionary. 2013.
Квадратное уравнение — Квадратное уравнение алгебраическое уравнение общего вида где свободная переменная, , , коэффициенты, причём Выражение называют квадратным трёхчленом. Корень такого ура … Википедия
ThreePolinom — Квадратное уравнение уравнение вида ax2 + bx + c = 0, где Содержание 1 Уравнение с вещественными коэффициентами … Википедия
Квадратное Уравнение — Квадратное уравнение уравнение вида ax2 + bx + c = 0, где Содержание 1 Уравнение с вещественными коэффициентами … Википедия
Квадратные уравнения — Квадратное уравнение уравнение вида ax2 + bx + c = 0, где Содержание 1 Уравнение с вещественными коэффициентами … Википедия
Квадратный трехчлен — Квадратное уравнение уравнение вида ax2 + bx + c = 0, где Содержание 1 Уравнение с вещественными коэффициентами … Википедия
Квадратный трехчленный полином — Квадратное уравнение уравнение вида ax2 + bx + c = 0, где Содержание 1 Уравнение с вещественными коэффициентами … Википедия
Квадратный трёхчлен — Квадратное уравнение уравнение вида ax2 + bx + c = 0, где Содержание 1 Уравнение с вещественными коэффициентами … Википедия
Корень квадратного уравнения — Квадратное уравнение уравнение вида ax2 + bx + c = 0, где Содержание 1 Уравнение с вещественными коэффициентами … Википедия
Разложение Квадратного трехчлена — Квадратное уравнение уравнение вида ax2 + bx + c = 0, где Содержание 1 Уравнение с вещественными коэффициентами … Википедия
Разложение квадратного трехчлена — Квадратное уравнение уравнение вида ax2 + bx + c = 0, где Содержание 1 Уравнение с вещественными коэффициентами … Википедия